Tag: LEADS Fellow Blog
Week 5: Sonia Pascua – Project progress report
- Digitized 1910 LCSH was converted in Docx format by Peter
- I was able to run the HIVE code in the local computer for code exploration
- A sample db in HIVE is composed of 3 tables. Below is the LCHS db in HIVE
- I was able to create the 1910 LCHS thesaurus for letter A in page 1 using MultiTes
- I generated the html of the 1910 LCSH Multites Thesaurus
- I also generated the RDF/XML format of the thesaurus
- I am looking at the solution for the project.
- How will the Docx format of 1910 LCHS be converted to RDF automatically?
- How will the Docx format of 1910 LCHS be loaded to HIVE DB automatically?
- Which solution to take given the limited time
- SKOS in HIVE have limited elements of the standard SKOS
- To explore MultiTes in the automation of converting 1910 LCSH Doc to RDF
- To explore other tools in the automation of converting 1910 LCHS Doc to RDF
- To explore the HIVE code in the automation of loading 1910 LCSH DOC to HIVE db
Alyson Gamble: Week 03
- Address data needs to be addressed using resources available to deal with old street names, as well as standardization of address formats
- School data needs to be adjusted for duplication and re-naming
- Occupation data needs to be considered. Can the non-standard occupations be mapped to controlled vocabularies? If not, how can this information be utilized.
—
Jamillah Gabriel: Moments in Time
The Tule Lake exit phone book (FAR) data represents the majority of information available about the many Japanese American citizens who passed through the internment camp system. In most cases, this in conjunction with the limited data from the entry file, represents all of the information that is available. While there is not much here that allows us to paint a complete picture of their lives, we are at least able to conceive of some select moments in time, which I attempt to do in the case of Mrs. Kashi.
Above: FAR exit file
Above: Exit record for Mrs. Mitsuye Kashi
Mrs. Mitsuye Kashi was born on April 24, 1898 in the southern division of Honshu, Japan. Eighteen years later, she would arrive in the US, and later become an American citizen, marry Jutaro Kashi, and have a son, Tomio. Before internment, she and her family lived in Sacramento, California. But in 1942, the family was moved to a local assembly center located on Walerga Road, and soon after, assigned to the Sacramento internment camp. At some point, the family was transferred to the Tule Lake internment camp, where sadly, Mrs. Kashi would spend her last days. On June 4, 1943, less than a year after arriving at Tule Lake, Mrs. Kashi committed suicide. She was 45 years old. We have no record of why she committed suicide, but one can assume that life in the internment camp was unbearable for her.
In September, just three months later, Mrs. Kashi’s son was sent away to Central Utah Project, or the Topaz camp, which was a segregation center for dissidents. There are no records of what happened to Tomio afterwards. Her husband was released on June 28, 1944 and upon final departure from the camp, became a resident of Santa Fe, New Mexico.
Rongqian Ma; Week 3 – Visualizing the Date Information
During week 3 I focused on working with the date information of the manuscripts data. Similar to the geographical data, working with date information also means working with variants. The date information of the manuscript data is presented in descriptive texts (e.g., early 15th century); and the ways of the description vary across the collection. Most of the time data appear as ranges, e.g., 1425-1450), and there is a lot of overlap between the ranges. Ambiguity of the information exists across the dataset, mostly because the date information was collected and pieced together from texts of the manuscripts. Additionally, some manuscripts appear to be produced and refined during different time periods, with texts created earlier during the 14th and 15th centuries and illustrations/decorations added at a later time – for example. So the first task I did was to regroup the date information and make it more clear for visualization. This graph shows how I color-coded the dataset and grouped the data into five general categories – before the 15th century, 1400-1450 (first half of the 15th century), 1450-1500 (second half of the 15th century), 16th century, and cross-temporal/multiple periods.
Based on the groupings, I created multiple line graphs, histograms, and bar charts to visualize the temporal distribution of the book of hours productions from different aspects. The still visualizations assisted me in finding some interesting insights – for example, the production of the book of hours experienced an increase from the 1450s onward, which was relatively the same period of the inventing of the printing press.
But one problem of the still graphs is that they can’t effectively combine the date information with other information in the dataset, to explore the relationships between various aspects of the manuscript data and to display the “ecosystem” of the book of hours production and circulation in the middle ages Europe. Some questions that might be answered by interactive graphs include: If, during certain periods of time, was the book of hours production especially popular in certain countries or regions? And, did the decorations or stylistics of the genre change over time? To explore more interactive approaches, I am also exploring TimelineJS and creating a chronological gallery for the book of hours collection. TimelineJS is a storytelling tool that allows me to integrate time information, images of sample book of hours, and descriptive texts into the presentation. I am currently communicating with my mentor about this idea and I look forward to sharing more about it in the next few weeks’ blogs.
Best,
Rongqian
LEADS Blog #3 Setup a `virtualenv` for yamz!
Setup a `virtualenv` for yamz! |
|
Hanlin Zhang |
July 9th, 2019 |
This week I have solved a Google OAuth login problem caused by incompatible Python environments. Typically, there could be multiple versions of Python that are installed on the same machine, e.g. I have Python 2.7.10 (comes with my macOS), Python 2.7.16 (Anaconda), Python 3.7.1 (Anaconda) installed on my laptop, which may create some compatibility issue. In our case, we know yamz requires Python 2, but the real problem is that there are different versions of Python 2 and unexpected errors may occur if the program was installed on a “wrong” Python setup. The good news is, Bridget is able to run yamz successfully with the following configuration:
Python 2.7.10 on with Mac Mojave 10.14.5
However, I was unable to reproduce the same result in the first place since the program kept throwing me out an error message. I have done the initial debugging process with the help from Bridget, but I was still unable to solve the problem until John Kunze, our LEADS mentor, shed light on isolating the Python environment with `virtualenv`. John suspects the error was caused by running yamz on an Anaconda distribution of Python:
Python 2.7.16 (Anaconda) on macOS Mojave 10.14.5
which keeps fighting against the system’s default one. However, this can be solved by using a Python package called `virtualenv`. According to the documentation of `virtualenv` (see https://virtualenv.pypa.io/en/latest/), this Python package is able to “create isolated Python environments”, where it extracts a specified version of Python from my laptop and builds a virtual environment to run the program, which is very like running a virtual machine for Python on my laptop.
Luckily, `virtualenv` has solved the problem and now I’m able to login! Further, I’m also able to isolate the Python environment now, which allows me to do further investigations on the impact of Python versions on installing yamz. I’m going to explore install yamz on several different Python versions. Since Anaconda distributions are so common right now, I think it might worth it for me to test Anaconda Python and put the result in the new readme file. I’m curious about if the login problem was caused by Anaconda Python itself or the conflict between the default version of Python on my laptop and the Anaconda distribution I installed later.
To learn more about `virtualenv`:
-
Virtualenv and why you should use virtual environments
https://www.youtube.com/watch?v=N5vscPTWKOk&t=139s
-
Working Effectively with Python Virtual Environments (Virtualenv)
https://www.youtube.com/watch?v=8KWVEc6vFgA&t=53s
Week 3: Metadata – data about data
Week 3-4: Sonia Pascua, The Paper and the proposal
In the past weeks, I was able to progress by co-authoring a paper with Jane Greenberg, Peter Logan and Joan Boone. We’re able to submit the paper entitled “SKOS of the 1910 Library of Congress Subject Heading for the Transformation of the Keywords to Controlled Vocabulary of the Nineteenth-Century Encyclopedia Britannica” to NKOS 2019 which will be held in Dublin Core Conference 2019 in South Korea on Sept 23 -26, 2019. We couldn’t wait the acceptance of the paper hoping that this research has a novelty in the field of Simple Knowledge Organization Systems (SKOS).
- Digitized format of 1910 LCHS is converted to text format to help in the manipulation of texts and words. This has been done already by Peter. The 1910 LCSH in digitized format which was made available by Google under the HathiTrust project is composed of 2 volumes. In the text format (.docx), volume 1 is composed of 363 pages and volume 2 has 379 pages.
- Vocabularies are assessed to identify the structures and relationships of the vocabularies in 1910 LCHS and be able to be mapped to the elements and syntax of the SKOS vocabulary. These elements and syntax have integrity conditions that are used as a guideline for best practices in constructing SKOS vocabularies.
- Processes, methods and methodology are documented and tested for reproducibility and replication purposes. The project will run for 10 weeks and it’s challenging to be able to complete the SKOS-ination of the entire 2 volumes of the 1910 LCHS. However, if the processes, tools, techniques and guides are available, the project could be continued and knowledge could be transferred to completely finish the SKOS of the 1910 LCHS.
- Tools to be used in building the SKOS of the 1910 LCHS and in automating its creation processes, are seen to be one of the vital output of this endeavor.
- Frazier, P. (2015, August 11). SKOS: A Guide for Information Professionals. Retrieved July 9, 2019, from http://www.ala.org/alcts/resources/z687/skos. Association for Library Collections and Technical Services, American Library Association
- HathiTrust: Home. (n.d.). Retrieved July 9, 2019, from www.hathitrust.org/. HathiTrust Digital Library
- Logan, P. (n.d.). Nineteenth-Century Knowledge Project. Retrieved July 9, 2019, from tu-plogan.github.io/. Digital Scholarship Center, Temple University
- SKOS Simple Knowledge Organization System – Home Page. (n.d.). Retrieved July 9, 2019, from https://www.w3.org/2004/02/skos/. Semantic Web Deployment Working Group, World Wide Web Consortium (W3C)
Jamillah Gabriel: Deep Diving into the Data
This past week has been spent delving into the datasets available to me in order to get a better sense of the lives of internees of the Japanese American interment camps, from entry to exit. What this means is that I’m looking at the entry data, exit data, and incident cards to glean a better understanding of life during this time. Some of the data that helps me in this endeavor are details about the first camp where a person entered the system, the assembly center they were taken to before getting to the camp, the date they first arrived at camp, other camps they may have been transferred to or from, the camp they last stayed at before exiting, their final departure date, the destination after their departure from the camp, birthdate, birthplace, and where they lived before internment (among many other details). The incident cards represent the recordkeeping system that includes details of various “offenses” that took place within the camps, and were typically only written up for people who violated rules in the camp, or in some cases, to keep records of deaths within the camp. Not every internee has incident cards, so there are silences and erasures within these archival records that might never be uncovered. But what one can do is gather up all of these details and possibly try to glean from them a narrative about the life of the internee imprisoned in these camps.
This is what I’m currently working on and I hope to share a little bit about select people in coming weeks. One of the most important things to consider is the sensitivity of these records as not all data can be publicly divulged at this point. NARA, the current steward of the records, has asked that we adhere to the restriction of 75 years when disclosing data. In other words, any records taking place after July 8, 1944 cannot be revealed. This is something I’ll have to keep in mind going forward in terms of how to best present the data in ways that both highlight and privilege the narratives and stories of the people unjustly imprisoned in these camps.
Week 3: Bridging NHM collection to Biodiversity Occurrence dataset – example of land snails