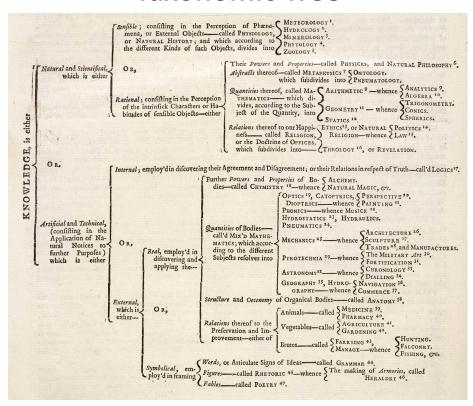
Modeling Ephraim Chambers' Knowledge Structure from a Naïve Standpoint

Scott McClellan, MRC/CCI, Drexel University, sm4522@drexel.edu

Mat Kelly, MRC/CCI, Drexel University, mrk335@drexel.edu

Jane Greenberg, MRC/CCI, Drexel University jg3243@drexel.edu


Overview

- What is Chambers' Cyclopaedia? And why is it important?
- Naïve vs Informed Modeling
- Modeling
 - Thesaurus
 - Ontology
- Implicature
- Conclusions

Chambers' Cyclopaedia

- Published 1728
- "Preface" lays out knowledge structure
 - Taxonomic tree
 - Domain vocabulary
- Taxonomic graphically represents abstract knowledge
 - Lowest nodes of the tree are (mostly) the domain vocabulary headwords
- Domain vocabulary
 - Structured sets of related terms

Taxonomic Tree

Domain Vocabulary (Example)

3 MINEROLOGY, or the History of EARTH; 1°, Its Parts, as Mountain, Mine, Moss, Bog, Grotto; and their Phænomena, as Earth, quake, Volcano, Conflagration, &c. Its Strata, as Clay, Bole, Sand-&c. 2°, Fossils or Minerals, as Metals, Gold, Silver, Mercury, &c. with Operations relating to 'em, as Fusion, Resining, Purifying, Parting, Essaying, &c. Litharge, Lavatory, Pinea, &c. Salts, as Nitre, Natron, Gemma, Allum, Armoniac, Borax, &c. Sulphurs, as Arsenic, Amber, Ambergrease, Coal, Bitumen, Naphtha, Petrol, &c. Semimetals, as Antimony, Cinnabar, Marcasite, Magnet, Bismuth, Calamine, Cobalt, &c. Stones, as Marble, Porphyry, Slate, Asbestos, &c. Gems, as Diamond, Ruby, Emerald, Opal, Turcoise, &c. Emery, Lapis, &c. whence Ultramarine, Azure, &c. Petrifactions, as Crystal, Spar, Stalactites, Trochites, Cornu Ammonis, and the like.

Naïve vs Informed Modeling

- What is meant by naïve:
 - Less knowledge about underlying subject
 - Less access to a subject matter expert
 - Less familiarity with system of expression
- Spectrum
 - Modelers vary in degrees of expertise and naivete
- Crossover skills
 - Language
 - Adjacent Studies

Thesaurus/Ontology

	Thesaurus	Ontology
Pro	 Expresses basic hierarchy well Easier to reconcile logical inconsistencies, e.g., duplicate terms Describes domain vocabulary well 	 More robust class and sub-class descriptions Expresses complex connections between and across classes Incorporates taxonomic tree structure
Con	 Facets sometimes difficult to describe Relationships tend to be less expressive 	 Model relies on greater understanding of logic Tend to be more interpretive than descriptive

Implicature

"Our talk exchanges do not normally consist of a succession of disconnected remarks and would not be rational if they did. They are characteristically, to some degree at least, cooperative efforts; and each participant recognizes in them, to some extent, a common purpose or set of purposes, or at least a mutually accepted direction" —Paul Grice, *Studies in the Ways of Words*, 26

- Attempts to understand how participants in a conversation derive meaning from each others' utterances based upon situation and environment
- Modified Occam's Razor: Try not to allow meaning to proliferate
- Lack of a physical second actor complicates the theory

Implicature Continued

- Applying the theory to Chambers' vocabulary
 - Descriptive connectors
 - Typographical features
 - Shared language (for English speakers)
 - Well adapted for more descriptive knowledge organizations (e.g., thesaurus)
- Problematic Points
 - Subtle shifts in language usage across time
 - Lack of deictic markers in places
 - Less useful in low-context situations (e.g., taxonomic tree)

Conclusions

- Information needs of the end user define the best model
- Encoding in Simple Knowledge Organizing System (SKOS)
- Integration into the Metadata Research Center's Helping Interdisciplinary Vocabulary Engineering (<u>HIVE</u>) application
- Continued research with the <u>19th Century Knowledge Project</u> and persistent identifiers for computational vocabulary work

Acknowledgements

- Joseph Tennis & Christopher Hodges, top-level SKOS encoding
- Sam Grabus & Jane Lippman, extended SKOS encoding
- Peter Logan, PI 19th Century Knowledge Project
- Grice, P. (1989) Studies in the ways of words. Harvard: Cambridge.