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Abstract Clarivate Analytics’s Web of Science (WoS) is the world’s leading scientific

citation search and analytical information platform. It is used as both a research tool

supporting a broad array of scientific tasks across diverse knowledge domains as well as a

dataset for large-scale data-intensive studies. WoS has been used in thousands of published

academic studies over the past 20 years. It is also the most enduring commercial legacy of

Eugene Garfield. Despite the central position WoS holds in contemporary research, the

quantitative impact of WoS has not been previously examined by rigorous scientific

studies. To better understand how this key piece of Eugene Garfield’s heritage has con-

tributed to science, we investigated the ways in which WoS (and associated products and

features) is mentioned in a sample of 19,478 English-language research and review papers

published between 1997 and 2017, as indexed in WoS databases. We offered descriptive

analyses of the distribution of the papers across countries, institutions and knowledge

domains. We also used natural language processingtechniques to identify the verbs and

nouns in the abstracts of these papers that are grammatically connected to WoS-related

phrases. This is the first study to empirically investigate the documentation of the use of the

WoS platform in published academic papers in both scientometric and linguistic terms.
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Introduction

During his long and impactful career, Eugene Garfield made significant contributions to the

field of information science and scientometrics. His work has resulted in many accolades

including being considered ‘‘one of the most visionary figures in information science and

scientometrics’’ (van Raan and Wouters 2017, para. 1) and ‘‘the grandfather of Google…’’

(Rumsey 2010, para. 6). Garfield’s most far-reaching contributions might be the more than

1500 papers he published1, which are the topic of many recent retrospectives and tributes.

These include Chen’s work (2017) examining the scientific impacts of Garfield’s oeuvre

and all the publications that cite his works as well as Bornmann et al.’s study (2017)

analyzing the historical roots of Eugene Garfield’s papers using the reference publication

year spectroscopy (RPYS) method.

Perhaps an equally substantial contribution is the work Garfield did to develop the

Science Citation Index (SCI) that is now part of the Web of Science (WoS) database.

Influenced by Frank Shepard’s efforts to trace the connections between citing and cited

legal documents in the 1870s (Adair 1955), Garfield proposed the idea of a unified index to

scientific documents in his seminal paper titled ‘‘Citation Indexes for Science A New

Dimension in Documentation through Association of Ideas’’ (Garfield 1955). Garfield

defined this new concept as a ‘‘thought’’ index, which is an extension of a subject index by

offering a more thorough coverage of the content of scientific publications; moreover,

rather than relying upon a limited number of professional indexers, this new index would

be built on the efforts conducted by the researchers themselves, a so-called ‘‘army of

indexers’’ (p. 110). This concept is the theoretical foundation of what would become the

Science Citation Index and ultimately the Web of Science.

In 1960, the Institute for Scientific Information (ISI) came into being after its name was

changed from Eugene Garfield Associates Inc. ISI was later acquired by Thomson Reuters,

and was eventually merged into Clarivate Analytics. In 1964, Eugene Garfield created the

first regular quarterly, print edition of the Science Citation Index (SCI) (Cawkell and

Garfield 2001; Lazerow 1974), which was followed by the Social Science Citation Index

(SSCI) and the Arts and Humanities Citation Index (A&HCI) in 1973 and 1978, respec-

tively (Klein and Chiang 2004). These indices include only journals that are deemed to be

of high quality and strong impact. As of November 2, 2017, the three indexes cover 8927,

3272, and 1787 journals, correspondingly. Although some of the data in these indices had

been available since the 1970s through other systems such as Dialog, it was not until 1997

when ISI, by then a part of the Thomson Corporation, merged this data into an online

interface called the Web of Science (Clarivate Analytics 2017; Meho 2007).

Today, Clarivate Analytics’s WoS has evolved into one of the world’s premier scientific

citation search, discovery, and analytical information platforms. It is used as both an

academic library research tool as well as a rich dataset for large-scale data-intensive studies

across myriad academic fields. WoS contains tens of millions of bibliographic records

comprising billions of citation connections and additional metadata fields; and many

thousands of additional items are ingested on a daily basis. The WoS platform also

includes software productivity functionality including EndNote and InCites (Clarivate

Analytics 2017).

Another core component of the Web of Science is the Journal Impact Factor (JIF). As is

well documented elsewhere, the ‘‘impact factor’’ is the measure adopted in the InCites

Journal Citation Reports (JCR) for SCI and SSCI (Garfield 1977, 2007; Meho 2007). By

1 All his works are available at his ResearcherID page at: http://www.researcherid.com/rid/A-1009-2008.
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calculating the number of citations received by all the papers published during a rolling

2-year window (Garfield 1972, 1996), it aims to evaluate the relative importance of sci-

entific journals. Despite its popularity, the method for calculating the impact factor is a

subject of on-going deliberation causing some researchers to feel that the JIF is not a

consistently reliable indicator of research quality (Amin and Mabe 2004; Cameron 2005;

Coelho et al. 2003; da Silva and Bernès 2017; Hansson 1995; Kumar et al. 2009; Seglen

1997; Simons 2008). On the other hand, the on-going discussions, writing, and broad

debate around the value of the impact factor and WoS also suggest not only the signifi-

cance of the impact factor in contemporary scientific evaluation, but also the prominent

role played by the Web of Science and its related products.

Throughout his career, Garfield deftly balanced the roles of entrepreneurial business-

man, imaginative academic researcher, and thoughtful mentor. However, and rather

curiously, his commercial contributions have rarely been examined from the perspective of

scientometrics, a field that has been significantly advanced both by Garfield’s research and

for-profit products. His colleagues and disciples from ISI, the Thomson Corporation,

Thomson Reuters, and Clarivate Analytics have consistently followed his lead with pub-

lished applied research work based on the Web of Science platform and citation dataset.

Perhaps most notable is Henry Small and his codification of co-citation analysis in the

early 1970s (Small 1973), although over the past few decades, others have added to this

body of accomplished scientometric analytical work (e.g., Pendlebury 1993; Ponomarev

et al. 2014; Pringle 2008; Shuai et al. 2017; Zhang et al. 2017). This research both

contributes new insights to bibliometric academic knowledge and also informs on-going

product innovation for the Web of Science platform and toolset; some of this research is

included in our analysis in this paper.

The concept of scientometrics was first coined by Nalimov and Mulchenko (1969) to

denote ‘‘all aspects of the literature of science and technology’’ (Hood and Wilson 2001,

p. 293). Since then, the term has been gradually refined and is now generally accepted to

mean the quantitative aspects of the studies of science and technology (Sengupta 1992;

Van Raan 1997), which has significant overlap with the concept of bibliometrics (Broadus

1987). Zupic and Čater (2015) identified five major methods used in bibliometric studies,

including citation, co-citation, bibliographic coupling, co-author, and co-word, the first

three of which can be applied on multiple levels of entities. All these methods, from

different angles, deal with the quantitative impact of a work or a collection of works, the

intellectual and distributive structure of a knowledge domain or a research community, and

the relationship between entities (e.g., author, journal, country, etc.) in the space of sci-

entific publication.

Traditionally, scientometric studies are based on the close evaluation of explicit citation

connections between scientific documents. During the past decade, as the quantity of

research output has risen precipitously and digital data objects have become more

important for scientific research and scientists, datasets have also started to become direct

research objects in scientometric studies. Under this line of scholarship, researchers have

traced the quantitative scientific impact of specific datasets (Apai et al. 2010; Belter 2014;

He and Han 2017; He and Nahar 2016; Mayo et al. 2016; Peters et al. 2015, 2016). A

related topic that has recently attracted substantial interest is the quantification of the

impact on original papers, typically measured in increased citations, after a paper’s dataset

has been made openly available (e.g., Dorch 2012; Gleditsch et al. 2003; Henneken and

Accomazzi 2011; Ioannidis et al. 2009; Pienta et al. 2010; Piwowar et al. 2007; Piwowar

and Vision 2013). In our view, these findings all support the growing importance of
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research datasets and suggest their emerging value as objects of focus for scientometric

studies.

Moreover, a few studies have investigated the different patterns of digital object

mentions and citations across disciplinary boundaries. For example, Chao (2011) found

that earth science datasets are primarily cited in physical science and interdisciplinary

journals. More recently, Zhao et al. (n.d.) identified highly variant patterns of the ways

datasets are mentioned, cited, and described in scientific papers across 12 disciplines. Both

of these studies suggest that academic field of study is a key variable of how data objects

are addressed in scientific publications. One approach to scientometric studies of digital

objects is the use of automatic natural language processing (NLP) techniques to investigate

the grammatical patterns of a large body of texts. NLP methods, especially part-of-speech

(POS) tagging, sentiment analysis, and name-entity recognition, have been increasingly

used by scientometricians to answer a wide range of research questions (Demarest and

Sugimoto 2015; Pan et al. 2015; Small 2011; Teufel et al. 2006). Following the tradition of

citation content and context analysis established by Henry Small (Small 1982), these

methods have deepened our appreciation of the impact of individual documents or objects,

by taking the citation or mention context into consideration.

Despite the prominent position held by the Web of Science database, and its associated

products and features, in scientific studies across different knowledge domains, the WoS

platform and dataset have been examined only minimally using the theories and methods

that they have supported. To better understand Eugene Garfield’s contributions and to

extend the scholarship of scientometric examination of data objects, this paper aims at

investigating how the Web of Science database is mentioned in published scientific papers.

More specifically, we will answer the following questions:

• How have Web of Science and its products been mentioned in scientific literature?

• How are the papers that mention Web of Science distributed across different document

genres, institutions, countries, and knowledge domains?

• How have these distribution patterns changed over time?

• What additional words are used most frequently along with mentions of WoS and its

components in the abstracts of papers?

We believe that the answers to these questions will help to illustrate some of the depth and

breadth of the impact of WoS as both a search tool and a bibliographic dataset over time

and across academic fields.

Methods

Data was collected in the web interface of WoS during November 14–15, 2017. Four terms

related to WoS, ‘‘web of science,’’ ‘‘impact factor,’’ ‘‘science citation index,’’ and ‘‘journal

citation report,’’ were used to search in the Web of Science Core Collection; this includes

academic materials published in more than 18,000 scholarly journals2. We choose these

four terms for our search criteria based on our literature review and our intuition and

general experience with scientometrics and the WoS platform. Besides the query terms, we

also limited our data to only include research and review articles written in English and

published between 1997 and 2017. We chose this time period as it is contiguous with the

existence of the Web of Science itself, which debuted in 1997. We found 19,478 papers

2 https://clarivate.com/products/web-of-science/web-science-form/web-science-core-collection/.
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meeting our criteria, and downloaded their metadata records for our analysis. Unless

otherwise specifically noted in the following sections of this paper, when we refer to ‘‘Web

of Science,’’ all the results connected to these terms are included.

We focused our analysis on the following aspects of the metadata records offered by

WoS: journals, subject categories, institutions and countries of all authors. These metadata

fields are significant to the present study because they are the strongest indicators of the

impact of WoS in some space, either geographical or intellectual. To understand the

knowledge domain of each article, we extracted the InCites Journal Citation Reports (JCR)

Citation Index categories from the ‘‘WC’’ field in the downloaded dataset. We then mapped

all these categories into Essential Science Indicator (ESI) classes using an approach similar

to that reported by Yan (2014). ESI has 22 classes, compared to 252 in JCR. By having a

much smaller number of categories, the ESI scheme can thus reflect a broader view of all

knowledge domains. It is also worth noting that only science and social science domains

are included in the original ESI schema. We added new categories, such as ‘‘Arts &

Humanities,’’ to those in ESI to more comprehensively cover the scope of our WoS dataset.

For the geographical information associated with each paper, we relied upon the country

information from the ‘‘C1’’ field of the downloaded dataset, even though country and

institution are not mentioned in the address statement in every bibliographic record. We

applied text mining techniques to extract country and institution names from the address

statements. All descriptive data was analyzed and visualized using the software R (R Core

Team 2016).

To investigate the contexts in which WoS is mentioned in the papers, we analyzed the

words that are grammatically connected to the WoS entities in the abstracts of all the

sampled papers. To this end, we parse the dependency networks (Carroll et al. 1999; Klein

and Manning 2003) of all the sentences in the abstract, and analyzed only the verbs and

nouns that are directly dependent with the phrases that are related to WoS. We tagged all

the WoS-related phrases in advance, to avoid the phrases being parsed as individual words

(for example, we changed ‘‘Web of Science’’ into ‘‘WebOfScience,’’ and ‘‘Institute for

Scientific Information’’ into ‘‘InstituteForScientificInformation’’ in our data.) We used the

Stanford CoreNLP software (Manning et al. 2014) as implemented in the ‘‘coreNLP’’

package of R (Arnold and Tilton 2016) to conduct this analysis.

Results

General distributive patterns of all papers

As shown in Fig. 1, there has been a dramatic and steady growth in the number of papers

mentioning WoS during the past 20 years. We identified 3739 papers that mentioned any

WoS-related concept published in 2016, more than 120 times the size of papers published

in 1997, and about 0.21% of all papers published that year. WoS debuted as an online

product in 1997 so, given the eventual pervasiveness of the tool, it seems intuitive that

there would be some increase in its use over time. Regardless, we see this growth as a solid

indication of the important role played by WoS in the overall academic community.

We are specifically interested in how WoS has been mentioned in review papers versus

research papers. As shown in Fig. 2, overall, the percentage of review papers in our dataset

has been increasing since the beginning of the twenty-first century: after 2015, more than

half of all papers published every year are review papers. This highlights the importance of
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WoS data and tools not only as the instrument for empirical scientific studies, but also for

studies to resolve the differences between a group of reports or to find new research areas

based on existing efforts.

There are 3905 unique journals included in our dataset; of these, 10 journals cover 4232

papers in the sample (or 21.7% of all papers). Among these journals, Cochrane Database

of Systematic Reviews (CDSR) (1359), PLoS ONE (766), and Scientometrics (757) are the

three top journals in the list. All the other journals published fewer than 250 papers

mentioning WoS-related entities. Most of the journals in the top 10 list belong to medical

science (such as Medicine, Oncotarget and International Journal of Clinical and

Fig. 1 Yearly distribution of all papers mentioning Web of Science

Fig. 2 Percentage of review papers mentioning Web of Science
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Experimental Medicine) and information science (such as Journal of Informetrics and

Journal of the American Society for Information Science and Technology). We also split all

papers into four groups by the publication year (1997–2002, 2003–2007, 2008–2012, and

2013–2017), and investigated the top journals by each group. One of the most salient

patterns in this table is that journals in the field of library and information science have

been gradually replaced by journals in other fields, especially medical science: five of the

top 10 journals in the first period are from information science verses only two in the last

period.

Distribution of papers by country and institution

Table 1 displays the top 10 countries that are connected to all authors in the sampled

papers. These countries contribute to 15,656 papers in our dataset (or 80.3% of all papers).

It is worth mentioning that this table is relatively consistent with other country-level

rankings based on a large quantity of academic publication data, such as the Nature

INDEX3.

Table 2 displays the frequencies of country of origin of first authors for papers in our

dataset. Although this list shares all the same countries as Table 1, the order of the

Table 1 Top 10 country of ori-
gin of all authors

Country Count

China 5096

USA 4076

England 2614

Canada 1321

Australia 1290

Netherlands 1068

Italy 907

Germany 851

Brazil 799

Spain 734

Table 2 Top 10 first author
country of origin

Country Count

USA 1951

England 998

China 904

Canada 492

Australia 473

Netherlands 436

Brazil 337

Spain 299

Italy 284

Germany 269

3 https://www.natureindex.com/annual-tables/2016/country/all.
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countries varies. For example, China decreases from No. 1 in the previous table to No. 3 in

this one.

Figure 3 displays the number of papers produced in the top 10 countries by year, as well

as their relative sizes within all the papers published by the top 10 countries (for all the

figures in this paper, the size of the category is represented by the space under the line). It

shows a similar increasing pattern of the number of publications among these countries that

is similar to the whole sample. Notably, the rapid growth of China can also be observed

easily: it surpassed the USA as the most productive country in 2013. Figure 4 shows the

absolute and relative sizes of the top 10 countries with only the first authors counted.

Besides the country of all authors, we also analyzed the top institutions from our

dataset. University of Toronto (527), Mayo Clinic (483), and Sichuan University (470) are

the three most frequently occurring institutions from 1997 to 2017. Two other institutions

(China Medical University and Zhejiang University) have also published than 400 papers

Table 3 Top 10 frequently occurring academic journals from the periods of 1997-2002, 2003-2007,
2008-2012, and 2013-2017

Journal Count Journal Count

Scientometrics 40 Cochrane Database of Systematic Reviews 162

Haematologica 36 Scientometrics 100

Journal of Documentation 11 Journal of the American Society for
Information Science and Technology

30

Journal of Information Science 10 JAMA—Journal of the American Medical
Association

15

Journal of the American Society for
Information Science and Technology

9 Annals of Pharmacotherapy 12

Physical Review D 7 British Medical Journal 12

Annals of Pharmacotherapy 6 Journal of Advanced Nursing 9

Web of Knowledge—A Festschrift in
Honor of Eugene Garfield

6 American Journal of Gastroenterology 8

British Medical Journal 5 Evidence Based Library And Information
Practice

8

Journal of the American Society for
Information Science

5 Journal of Information Science 8

Cochrane Database of Systematic Reviews 493 Cochrane Database of Systematic Reviews 704

Scientometrics 221 PLoS ONE 669

Journal of the American Society for
Information Science and Technology

96 Scientometrics 396

PLoS ONE 95 Medicine 245

Journal of Informetrics 66 Oncotarget 234

Health Technology Assessment 43 International Journal of Clinical and
Experimental Medicine

225

British Medical Journal 39 BMJ Open 191

Collnet Journal of Scientometrics and
Information Management

27 Tumor Biology 119

Breast Cancer Research and Treatment 23 Scientific Reports 112

European Urology 23 Journal of Informetrics 98
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each. Following the example of Table 3, the top institutions by year group are displayed in

Table 4. Mirroring the patterns we observed with countries, the number of papers con-

nected to institutions outside America and Europe, especially China, has grown substan-

tially during the past 20 years: all but three of the top institutions in the last group are from

China.

Distribution of papers by scientific field

Our dataset covers 232 of all the 252 JCR subject categories used in the Web of Science

Core Collection. Table 5 shows the top 10 subject categories covered by all the papers.

Moreover, we did extra queries in WoS database using each of these 10 subject categories

Fig. 3 Number and percentage of papers by Top 10 countries based on all authors by year
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combined with other parameters described in the section of data collection (English aca-

demic and review papers published between 1997 and 2017). Based on the results, we

calculated the percentage of papers mentioning WoS entities in the total number of papers

under each category. Not surprisingly, Information Science & Library Science has the

highest percentage of papers mentioning WoS, suggesting the importance of the database

and tools in this field. Medicine, General & Internal also has a significantly higher per-

centage than the rest of the top categories.

From both Tables 1 and 5, it is not difficult to observe that most of the papers we

retrieved belong to medical science. This observation is supported as JCR subject cate-

gories were mapped to ESI classes. Table 6 lists the top 10 ESI classes covered by all

papers, where Clinical Medicine is the dominant knowledge domain in our data.

Fig. 4 Number and percentage of papers by Top 10 countries based on first authors by year
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We plotted both classification schemes on the timeline, as displayed in Figs. 5 and 6.

Based on Fig. 5, Information Science & Library Science is the field where WoS was

mentioned the most before 2005. After 2005, it was gradually surpassed by other fields

such as Medicine, General & Internal and Oncology. Most of the top categories in this

graph had a substantial growth during the past decade.

As for the ESI subject classes, Clinical Medicine has been the dominant domain during

most of the twenty-first century. All the other categories, except for Social Science, fail to

Table 4 Top 10 most frequently occurring institutions from the periods of 1997–2002, 2003–2007,
2008–2012, and 2013–2017

Institution Count Institution Count

Univ Calif San Francisco 10 Univ Toronto 43

Univ Genoa 10 Univ Alberta 31

Hosp Univ Canarias 9 Univ Amsterdam 29

McMaster Univ 8 Univ Calif San Francisco 27

Univ Birmingham 7 McMaster Univ 23

Johns Hopkins Univ 6 Johns Hopkins Univ 18

Off Naval Res 6 Taipei Med Univ 18

Royal Sch Lib & Informat Sci 6 Tufts Univ 18

Inst Sci Informat 5 Harvard Univ 16

Univ Bologna 5 Leiden Univ 16

Univ Toronto 155 China Med Univ 397

Mayo Clin 143 Sichuan Univ 384

Leiden Univ 99 Zhejiang Univ 376

Univ Alberta 96 Nanjing Med Univ 367

Univ Tehran Med Sd 95 Univ Toronto 328

Harvard Univ 88 Mayo Clin 326

Sichuan Univ 84 Univ Tehran Med Sci 291

McMaster Univ 78 Sun Yat Sen Univ 255

Fudan Univ 76 Fudan Univ 245

Univ Amsterdam 75 Huazhong Univ Sci & Technol 244

Table 5 Top 10 JCR subject categories

Subject Count Percentage of WoS papers

Medicine, General and Internal 2735 0.0078

Information Science & Library Science 1896 0.0295

Oncology 1286 0.0022

Multidisciplinary Sciences 1068 0.0021

Computer Science, Interdisciplinary Applications 1000 0.0049

Surgery 970 0.0014

Public, Environmental & Occupational Health 937 0.0025

Pharmacology & Pharmacy 783 0.0013

Clinical Neurology 684 0.0017

Medicine, Research & Experimental 601 0.0019
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distinguish themselves from others, despite their steady growth in terms of the total number

of papers after 2005.

Textual context of Web of Science mentions

In this section, we present only the results of NLP analysis for the term ‘‘Web of Science.’’

This choice was made for two reasons: first, of all the contextual terms identified in this

analysis, 71.7% (27,764 out of 38,641 words) are connected to ‘‘Web of Science;’’ second,

‘‘Web of Science’’ is also the broadest term that represents the overall topic of this paper.

In total, we found 5231 verbs and 15,853 nouns grammatically connected to ‘‘Web of

Science’’ from all the abstracts we examined.

Table 7 displays the five verbs that are the most frequently used, that are grammatically

connected to ‘‘Web of Science.’’ All these verbs are strongly connected to the context in

which the authors use WoS as a data source, and the use is described in the method

statement. This connection is reflected in both the types of grammatical connection

between the verbs and ‘‘Web of Science’’ and the quotes we have examined. For example,

for the verb ‘‘search,’’ its dependency relationship with ‘‘Web of Science’’ falls into the

following three categories of Universal Dependencies (Nivre et al. 2016) in more than 93%

(1876 of 2000) cases:

• ‘‘dobj’’ (the noun phrase is the direct object of the verb)

• ‘‘nsubjpass’’ (the noun phrase is the syntactic subject of a passive clause)

• ‘‘nmod’’ (a word is nominal dependent of another noun or noun phrases, as an attribute

or complement)

A representative quotation for each category is listed below (emphasis added):

Relevant studies were identified by searching PubMed, EMBASE, and ISI Web of
Science for articles published before April 2017. (Wang et al. 2017, p. 59666)

PubMed, Embase, and Web of Science for publications were searched using the

keywords of miR-150 and human cancer. (J. Yan et al. 2017, p. 1187)

We searched in EBSCO, PsycINFO, Google Scholar, Web of Science, and NCBI

databases and other articles manually from lists of references of extracted articles.

(Piqueras, Martı́n-Vivar, Sandin, San Luis, & Pineda 2017, p. 153)

Table 6 Top 10 ESI categories
Field Count

Clinical Medicine 11,909

Social Sciences, general 3486

Computer Science 1482

Science, Multidisciplinary 1068

Biology & Biochemistry 935

Psychiatry/Psychology 862

Pharmacology & Toxicology 842

Molecular Biology & Genetics 577

Engineering 462

Environment/Ecology 454
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The same pattern was found for the four other top verbs listed in Table 7. These verbs

share a similar semantic meaning with ‘‘search’’ (as a method of data collection), and the

majority instances of their relationship with ‘‘Web of Science’’ fall into the aforementioned

categories.

Even though building a fuller typology of the context of mentioning WoS is beyond the

scope of this paper, we identified three different contexts distinct from those discussed

above. These contexts include Web of Science as mentioned to set the stage for the

research, Web of Science as described in the result statement, and Web of Science as

Fig. 5 Top 10 JCR subject categories by year (CN: Clinical Neurology; CS-IA: Computer Science,
Interdisciplinary Applications; ISLS: Information Science & Library Science; Med-GI: Medicine, General
& Internal; Med-RE: Medicine, Research & Experimental; MultiSci: Multidisciplinary Sciences; Phar:
Pharmacology & Pharmacy; Sur: Surgery; Onc: Oncology; PEOH: Public, Environmental & Occupational
Health)
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Fig. 6 Top 10 ESI subject categories by year (Bio: Biology and Biochemistry; ClinMed: Clinical
Medicine; CS: Computer Science; Eng: Engineering; Env: Environment and Ecology; MolBio: Molecular
Biology and Genetics; Phar: Pharmacology and Toxicology; Psych: Psychiatry and Psychology; MultiSci:
Science, Multidisciplinary; SocSci: Social Science, general)

Table 7 Top five most fre-
quently occurring verbs linked to
‘‘Web of Science’’

Verb Count

Search 2000

Use 723

Conduct 333

Perform 310

Identify 176
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mentioned in the conclusion statement. An example of each category is offered below

(with emphasis added):

An archetype of these databases is the Web of Science (WoS) that stores scientific

publications. (Orosz, Farkas, & Pollner 2016, p. 829)

In the Web of Science published by the Institute for Scientific Information, the

earliest literature record was in April, 1995. (Leng, He, Li, Wang, & Cao 2013,

p. 1286)

Apparently, the ISI WoS is more suitable to compare the research productivity of

different countries, authors or institutions. (Jelercic, Lingard, Spiegel, Pichlhöfer, &

Maier, 2010, p. 582)

In all these papers, these contexts are not mutual-exclusive: sentences serving different

purposes coexist in all these three papers. Moreover, the dependency patterns of these three

sentences are also shared by the sentences under the first scenario. For example, many

cases of ‘‘be’’ and ‘‘publish’’ as the contextual verbs of Web of Science are also used to

introduce Web of Science as the data source.

We also analyzed the most frequent nouns directly linked to Web of Science mentions.

Table 8 shows the top 10 nouns identified from our sample.

Overall, nouns were more challenging to parse and analyze properly due to the nature of

the specific words most frequently associated with WoS mentions. For example, seven of

the 10 nouns included in this list are proper nouns; they are all product names of other

databases (such as ‘‘Medline,’’ ‘‘Embase,’’ ‘‘Scopus,’’ ‘‘CINAHL,’’ and ‘‘PsycINFO’’) that

are listed together with Web of Science as the search tool or data source for a particular

study. Some of these names, especially ‘‘Scopus’’ and ‘‘PubMed’’ (the latter name fails to

make this list but is still frequently mentioned), are sometimes mistakenly identified as

verbs by the parser, which reduces their presence in this list. In some other cases, these

terms are a part of the name of a database; examples of this category include ‘‘library’’

(‘‘Cochrane Library’’), ‘‘scholar’’ (‘‘Google Scholar’’), and ‘‘register’’ (‘‘Cochrane Central

Register of Controlled Trials’’). This situation is because we did not preprocess the names

of other databases. ‘‘Database’’ and ‘‘search’’ are the only two words in the list that are

primarily used as regular nouns. Regardless, we feel that our analysis of the proper nouns

closely linked with Web of Science add a new dimension to the context of using Web of

Science as a data source, that it is also frequently used in combination with other databases.

Table 8 Top 10 most frequently
occurring nouns linked to ‘‘Web
of Science’’

Noun Count

Database 2489

Medline 2298

Embase 1652

Search 805

Scopus 799

Library 644

CINAHL 389

Scholar 368

Register 298

PsycINFO 253
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This line of inquiry is also an area where further research could likely uncover additional

insights.

Conclusions

This paper, for the first time, offers a selective review of the impact of WoS as a research

object from the perspectives of scientometrics and NLP. Our initial presumption, based on

our literature review and personal experience, was that WoS held a notable position as a

research tool and dataset across many academic fields and a close analysis would enable us

to quantify this. We first measured its scientific impact in terms of the total number of

papers in the Web of Science databases, and then analyzed the distributions of all the

sampled papers on the levels of journal, country, institution, and knowledge domain, with

or without the publication year considered. Moreover, we conducted an exploratory NLP

analysis to extract the verbs and nouns as the direct context of mentioning Web of Science

in the abstract of all the papers. We identified the most frequent words and their linguistic

connections to ‘‘Web of Science,’’ and discussed what these patterns might suggest about

the use and mention of Web of Science in the scientific texts.

Our descriptive analysis using scientometric techniques supports the fast-growing

impact of Web of Science based on scientific publication: the number of papers mentioning

Web of Science has risen from 30 in 1997 to more than 3700 in 2016, and the percentage of

papers mentioning Web of Science in all papers has also been increasing every year.

More importantly than its sheer count, Web of Science is also heavily used by global

researchers in nearly every knowledge domain. Based on incomplete address information,

we identified authors from 125 countries all over the world. Our sample also covers 232 out

of the 252 Web of Science subject categories. Among all these fields, Library and

information science is the category with the most papers and still has the highest per-

centage of papers mentioning Web of Science. However, many other fields, especially

those in medical science, have surpassed Library and information science in the produc-

tivity of using Web of Science data or at least mentioning its name. The knowledge domain

of Clinical Medicine, based on the ESI classification scheme, is the dominant domain

identified in this analysis, with more than three times as many papers as the second largest

domain, Social Science, general.

To enhance our insights of Web of Science based on quantitative measures, we also

adopted NLP techniques to dig deeper into the contexts in which Web of Science is

mentioned in the abstract of our sampled papers. By just focusing on verb and nouns that

are directly dependent with Web of Science, we concluded that the most important reason

researchers mention WoS is that it is used as a source of data, often in combination with

other databases. This conclusion was drawn based on the meanings and linguistic patterns

of the most often occurring verbs and nouns. We also found that there are other types of

contexts in which WoS is documented in the introduction, results, and conclusion state-

ments in the abstracts. Even though this scheme per se is not the aim of this paper, the four

categories are consistent with findings of many researchers in other linguistic analysis of

academic abstracts, that an ideal abstract is supposed to cover contents from all of the

introduction, method, result, and conclusion sections (e.g., Salager-Meyer 1990, 1992;

Samraj 2005; Swales 1981). Based on these studies, our results also suggest that WoS, as a

data object, could serve multiple functions within scientific texts, besides being used as a

data source. And these different contexts could be accompanied by distinguishable
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language patterns in scientific texts that can be automatically identified by NLP algorithms.

We are hoping to conduct future studies that more systematically address this very

important question between scientometrics and NLP.

Most importantly, we are confident that this study helps to quantify the general sig-

nificance of the Web of Science over the past 20 years. All of the findings of this paper

demonstrate that WoS is an increasingly significant scientific instrument across countries

and knowledge domains, being used by global scientists in different ways to answer

scientific questions. This is a tremendous intellectual debt the scientific community owes to

Eugene Garfield.

Limitations

While we made every practical effort to be thorough and comprehensive in our data

collection and analysis, we recognize there are a few limitations to the current study as

follows:

• We only used metadata from WoS. Use of metadata or full text from additional sources

could potentially yield different results or could be an avenue for further research to

complement this study.

• We focused on ‘‘review’’ and ‘‘article’’ document types thus excluding things like

opinion pieces and letters to the editor that may also include substantive references to

WoS and related entities.

• We analyzed only English language scholarly material even though WoS also indexes

material originally published in other languages.

• As noted in ‘‘Textual context of Web of Science mentions’’ section, the development of

a fuller typology of words related to WoS mentions was outside the scope of this study

but could likely be considered for future work.

• Also noted in the Conclusion just above, there are probable distinguishable language

patterns for different standard sections of scientific papers (abstracts, results, etc.) that

could be systematically identified and analyzed.

We are confident that these limitations are reasonable considering the scope of this current

study but also feel future research may benefit from expanding this work to encompass

some of the items listed above.
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